

DELIVERABLE

 This project has received financial support from the European Union Horizon 2020 Programme under grant agreement no. 101070303.

D2.2 Initial end-user requirements

Project Acronym: LAZARUS

Project title: pLatform for Analysis of Resilient and secUre Software

Grant Agreement No. 101070303

Website: https://lazarus-he.eu/

Contact: info@lazarus-he.eu

Version: 1.0

Date: 30/04/2023

Responsible Partner: MOT

Contributing Partners: ARC, UCM, UNIPD, ICO, DC, BNR, MAG, LIST

Reviewers: Constantinos Patsakis – ARC
Alessandro Brighente - UNIPD

Dissemination Level: Public X

Confidential – only consortium members and European Commission Services

Ref. Ares(2023)3083836 - 03/05/2023

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 2 30/04/2023

Revision History

Revision Date Author Organization Description

0.1 02/03/2023 Miltiadis
Anastasiadis

MOT TOC

0.2 10/03/2023 Nikos Stratigakis,
Panagiotis
Markovits,
Miltiadis

Anastasiadis

MOT First Draft

0.3 20/03/2023 Andrei Costin,
Vadim Bogulean,
Jordan Atalianis,

Lelia Ataliani,
Thanos Karantjias,

Spyridon
Papastergiou,
Tareq Chihabi,
Nikos Drosos,
Mirko Fabbri,

Alessandro Neri,
Mauro Scarpa,

Nikolaos
Karaiskakis,

Filippo Paganelli,
Nikos Stratigakis,

Panagiotis
Markovits,
Miltiadis

Anastasiadis

MAG, BNR, ICO,
MOT

Updated with functional and
non-functional user

requirements

0.4 30/03/2023 Ana Lucila
Sandoral, Sandra

Perez, Luis Alberto
Martinez, Fran

Casino,
Constantinos

Patsakis, Mauro
Conti, Alessandro
Brighente, Yuejun

Guo

WP3 partners,
UNIPD, LIST,
UCM, ARC

Updating user functional
requirements

0.5 07/03/2023 Andrei Costin,
Vadim Bogulean,

MAG, BNR, ICO,
MOT

Updating overall user
requirements

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 3 30/04/2023

Jordan Atalianis,
Lelia Ataliani,

Thanos Karantjias,
Spyridon

Papastergiou,
Tareq Chihabi,
Nikos Drosos,
Mirko Fabbri,

Alessandro Neri,
Mauro Scarpa,

Nikolaos
Karaiskakis,

Filippo Paganelli,
Nikos Stratigakis,

Panagiotis
Markovits,
Miltiadis

Anastasiadis

0.6 17/04/2023 Nikos Stratigakis,
Panagiotis
Markovits,
Miltiadis

Anastasiadis

MOT Updating entire document
with comments from all

involved partners

0.8 25/04/2023 Constantinos
Patsakis,

Alessandro
Brighente

ARC, UNIPD Final internal review

1.0 30/04/2023 Nikos Stratigakis,
Panagiotis
Markovits,
Miltiadis

Anastasiadis

 Final version

Every effort has been made to ensure that all statements and information contained herein are accurate,
however the LAZARUS Project Partners accept no liability for any error or omission in the same.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 4 30/04/2023

Table of Contents

1 Executive Summary .. 6

2 Introduction .. 7

2.1 Structure of the document .. 7

2.2 Overview of LAZARUS Consolidated Use Cases ... 8

3 Methodology used .. 9

3.1 Methodology for requirements collection and analysis .. 10

3.2 End user requirements .. 11

3.3 Labelling and presentation of user requirements ... 12

4 Functional Requirements ... 20

4.1 Services .. 20

4.2 Expected Behaviour ... 25

5 Non-functional Requirements .. 28

5.1 Timing Constraints ... 28

5.2 Development Constraints .. 28

5.3 Standard Constraints ... 29

6 MoSCoW Requirements Analysis ... 31

7 WP3 Input ... 38

8 Consolidated User Requirements ... 41

8.1 General Requirements ... 41

8.2 USE CASE 1 - Issue detection regarding secrets management .. 46

8.3 USE CASE 2 - Code Linting .. 47

8.4 USE CASE 3 - Static Code Analysis ... 48

8.5 USE CASE 4 - SQL Injection Vulnerability Detection .. 49

8.6 USE CASE 5 - Fuzzing .. 50

8.7 USE CASE 6 - CVE Scan ... 50

8.8 USE CASE 7 - Container Vulnerability Scanning ... 52

8.9 USE CASE 8 - Detection of Network Attacks & DDoS .. 52

9 Conclusions ... 54

10 References .. 56

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 5 30/04/2023

List of definitions & abbreviations

Abbreviation Definition

API Application Programming Interface

IDS Intrusion Detection System

SME Small Medium Enterprise

 UC Use Case

CVE Common Vulnerabilities and Exposures

DDoS Distributed Denial-of-Service

SDLC Software Development Life Cycle

 CFG Control Flow Graph

EOL/EOS end-of-life/end-of-sale

 SBOM Software Bill of Materials

 DAST Dynamic Application Security Testing

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 6 30/04/2023

1 Executive Summary

In the given task, the primary objective is to gather end-user requirements from various use cases. The

process involves conducting a comprehensive requirement analysis, which consists of several steps:

1. Interviews/Surveys with End Users and Key Stakeholders: To understand the expectations and needs

of the people who will use the system, it is essential to communicate with them directly. This step

involves conducting interviews or surveys with end users and key stakeholders to gather information

about their preferences, concerns, and any specific requirements they may have.

2. Definition of User Requirements: After collecting feedback from end users and stakeholders, the next

step is to compile and categorize the user requirements. This involves analyzing the collected data,

identifying patterns, and defining clear and concise user requirements that reflect the needs and

expectations of the target audience.

3. Step 2 above is enhanced and user requirements refined, by bringing onboard state of the art input

from research organizations within the consortium,

4. Identification of Non-Functional Requirements: Non-functional requirements are aspects of the

system that do not directly relate to its functionality but are essential for overall user satisfaction.

Examples include performance, security, and usability. In this step, non-functional requirements are

identified and documented to ensure the system meets these expectations.

5. Identification of Functional Requirements: Functional requirements describe the specific features

and capabilities of the system. These requirements outline what the system is supposed to do and

are essential for meeting user expectations. In this phase, the team identifies and documents the

functional requirements based on user feedback and use case analysis.

Once the user requirements have been gathered and analyzed, the next step is to translate them into system

requirements (Task 2.3). System requirements are a more technical description of the requirements and are

used by developers to build the system. Both user requirements and system requirements serve as the

foundation for work in Work Package 4 (WP4) and Work Package 5 (WP5), where the system will be designed,

developed, and tested.

Finally, after the testing and validation (T&V) phase is completed, the requirements may be updated to

address any issues or shortcomings identified during this process. This ensures that the system evolves and

improves in response to user feedback and real-world performance, resulting in a more effective and

satisfactory end product.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 7 30/04/2023

2 Introduction

D2.2 is a continuation of D2.1 that aims to identify and set functional and non-functional user requirements

for the LAZARUS platform, both in general and in the context of specific use cases. In addition, the deliverable

serves as the establishment of a communication channel between

▪ The pilots hosting partners to help them in describing in an accurate way their needs or wishes

▪ The research community and the pilot partners, through proposals, WP3 has made, for both user
requirements and technological tools to be used for the Lazarus platform as an added value.

▪ The technology partners by supporting them in understanding exactly the mentioned needs or
wishes

D2.2 - a very important deliverable towards designing a concise, realistic and market-oriented system - fully
supports the LAZARUS stakeholders by proposing a standard procedure for requirements specification that
will be used along the project lifetime for the development of the necessary components and interfaces.

2.1 Structure of the document

The deliverable is divided into the following chapters:

1. Executive Summary – condensed information summarizing the deliverable contents

2. Introduction – a short introduction of the deliverable goals

3. Methodology used – a high level presentation of the user requirements of the project, along with a

description of the methodology used to extract them

4. Functional Requirements – a breakdown of the identified functional requirements into specific

subcategories

5. Non-functional Requirements – a breakdown of the identified non-functional requirements into

specific subcategories

6. MoSCoW Requirements Analysis – a presentation of the priorities set for the various user

requirements, based on the MoSCoW prioritization technique

7. WP3 Input – a mapping showcasing in what ways WP3 will contributing towards the satisfaction of

each user requirement

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 8 30/04/2023

8. Consolidated User Requirements – a detailed analysis of all user requirements presented in previous

sections

9. Conclusion – conclusion of the deliverable based on previous chapters and outline of next steps

10. References

2.2 Overview of LAZARUS Consolidated Use Cases

Herewith and for purposes of clarity and continuity within WP2, we present the current overview of all the

use cases combined since the user requirements are formed per user case. This section provides a review

of definitions of the use cases and acts as a link also between D2.1 and D2.2.

Use Case ID High-Level Use Case Title Domain

UC-1
Issue detection regarding secrets

management
Pre-commit - Secrets Management

UC-2 Code Linting Pre-commit – Code Linting

UC-3 Static Code Analysis Vulnerability Scanning

UC-4
SQL Injection Vulnerability

Detection
Vulnerability Scanning

UC-5 Fuzzing Vulnerability Scanning

UC-6 CVE Scan Vulnerability Scanning

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 9 30/04/2023

UC-7 Container Vulnerability Scanning Vulnerability Scanning

UC-8
Detection of Network Attacks &

DDoS
Vulnerability Scanning

Table 2.1: Consolidated LAZARUS Use Cases

3 Methodology used

There are several definitions of what a requirement is. For LAZARUS we agreed to use the definition of ISO

(ISO/IEC 2007):

“A requirement is Statement that identifies a product (includes product, service, or enterprise) or process

operational, functional, or design characteristic or constraint, which is unambiguous, testable or measurable,

and necessary for product or process acceptability.”

Moreover, the term user requirements, in a specific technical sense, is the expression of the needs of the

stakeholders in the utilization domain or how a user will interact with a system and what that user expects.

In that sense it is really important to know the need of the people who are going to use the system.

Figure 3.1: Systems Engineering development cycle

The project is following a Systems Engineering [3] approach to assist in ensuring the LAZARUS solution is

suited to the practitioner-stakeholders for whom it is intended. The philosophy behind the approach and the

role of the Stakeholders Requirements is illustrated in the Figure 1.

In the light of design experience, it is usual for the implementers to extract features and functionalities from

the user requirements and constrains. However, implementers need to fully match user requirements hence

the above presented feedback loop may not be required or may be repeated more than once.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 10 30/04/2023

3.1 Methodology for requirements collection and analysis

To achieve an extensive array of realistic and relevant requirements, both external and internal sources were

used during the collection phase. Namely, with the pilot applications, defined use cases and consortium end

user needs as a base, the requirements were enriched by input from the research partners (WP3) as well as

the information received from the DevSecOps questionnaire responses (D2.1). The resulting requirement list

was then processed and ordered according to their priority in relevance to the project goals. In a nutshell,

the way user requirements are defined in LAZARUS, is depicted in the figure below.

Figure 3.2: Process of requirement specification

Three main requirements ’sources are considered, comprising the LAZARUS extended stakeholder

community:

➢ The first source reflects the End Users themselves that are part of the consortium, and which will

host the pilots.

➢ The second source comprises the results of the state-of-the-art analysis in addition to the output

gathered from the questionnaires prepared and have been kindly answered by external

organizations that accepted to collaborate with the LAZARUS consortium.

➢ The third source is from input gathered from WP3 research organizations, who, through several long

sometime meetings, provided valuable information and insights for both user requirements and

tools to be provided as output of WP3.

The collected requirements are prioritized using the Moscow methodology, after taking into account the real

needs of the LAZARUS extended community and stakeholders and those functionalities that are of primary

importance and can be supported in designing and building the LAZARUS integrated platform.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 11 30/04/2023

3.2 End user requirements

End user requirements specify exactly what the software must do and describe the expectations of the user

from a software that will be developed. As a part of the contractual agreement, the user requirement

protects the developer from demands of a user for features that are not documented or non-contractual and

prevents developers of claiming a software to be ready if it not fulfils the requirements. In the scope of

information technology, end user requirements are used to clarify for whom an IT software product is

developed. The term “end user” determines who will benefit from the developed product and who will finally

use it. It distinguishes the user from other possible actors during a development process as e.g.,

administrators or system operators. User requirements analysis within LAZARUS include the following

characteristics:

➢ are verifiable, clear and concise, complete, consistent, traceable, viable, necessary and

implementation manageable,

➢ are precise and well-defined,

➢ are unique and not lengthy based on consortium experience, and,

➢ do not contain unnecessary definitions, are unambiguous and easy to read.

To move forward with the LAZARUS system design and architecture, the requirements captured through the

methodology described above are classified as functional or non-functional. In a nutshell, functional

requirements describe how the system should function from the user perspective. Non-functional

requirements do not describe the functionality of the system, but they deal with other characteristics of the

system such as performance, reliability, software quality, and cost, which are concerns for the stakeholders

as well.

Requirement engineering differs between functional and non-functional requirements. End-users’

requirements are divided into two main categories: functional and non-functional. Defining functional and

non-functional requirements in a project is important but it’s essential for a project that both types of

requirements are fully taken into account during the development process.

• Functional Requirements: a functional requirement (FR) [1] defines a function of a system or its

component, where a function is described as a specification of behaviour between inputs and

outputs. In other words, functional requirements are LAZARUS platform features or functions that

the developers must implement to enable users to accomplish their tasks. Functional requirements

usually cover among others the following aspects: authorization levels, authentication, external

interfaces, reporting, historical data, administrative functionality, and legal requirements.

• Non-functional Requirements: a non-functional requirement (NFR) [2] is a requirement that

specifies criteria that can be used to judge the operation of a system, rather than specific behaviours.

They are contrasted with functional requirements that define specific behaviour or functions. Non-

functional requirements are based on the quality of how a required functionality is provided. Quality

in that sense can be how a functionality is performed or the conditions a functionality has to fulfil

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 12 30/04/2023

covering among others the following aspects: performance, scalability, capacity, availability,

maintainability, security, manageability, data integrity, usability, interoperability, recoverability,

environmental and regulatory. The non-functional requirements are particularly important for the

customer acceptance and therefore have to be defined with high attention.

Figure 3.3: Functional Requirements vs. Functional Requirements

3.3 Labelling and presentation of user requirements

At this point, the user requirements stemming from the use cases are a definition of requirements that are
taken into account in the current user requirements deliverable. Each user requirement is labelled and
analysed as per the table below content structure.

Requirement Label Indicator Description

UR-C-N-1

 Compliance with

existing security

standards

Compliance with existing security standards (such as

ISO27001, ISO 27002, ISO 27005, ISO 27035) [4]

associated with the protection of the

HealthCare/Energy/Transportation operators,

mandated by law and regulation for the protection

of critical infrastructures (NIS Directive, Directive

2002/21/EC [5], Directive (EU) 2016/1148 [6])

 UR-C-F-1
 Automated

Compliance Checks

LAZARUS should automate compliance checks

throughout the development life cycle, so as to

identify and remediate potential compliance issues

early in the development process, ensuring that

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 13 30/04/2023

applications, infrastructure, and configurations

adhere to relevant security laws, regulations, and

industry standards.

 UR-C-F-2
 Standards-based Policy

Enforcement

LAZARUS should enable organizations to define and

enforce policies based on the mentioned ISO

standards (ISO 27001, ISO 27002, ISO 27005, and

ISO 27035). By incorporating these standards into

the development pipeline, organizations can ensure

compliance with best practices and regulatory

requirements.

 UR-C-F-3
 Mapping to Regulatory

Frameworks

LAZARUS should have the capability to map security

controls and requirements to specific laws and

regulations, such as the NIS Directive, Directive

2002/21/EC, and Directive (EU) 2016/1148. This

simplifies the compliance process and helps

organizations demonstrate their adherence to the

relevant legal frameworks.

UR-C-F-4 Risk Management

In line with the ISO 27005 standard, the tool should

facilitate risk management by providing a

framework for identifying, assessing, and managing

information security risks throughout the

development life cycle.

 UR-CE-N-1
 Scalability and

Adaptability

The LAZARUS system should be modular and

flexible. As security laws and regulations evolve, a

DevSecOps tool should be scalable and adaptable to

accommodate new requirements and standards.

This ensures that organizations can maintain

compliance without significant disruptions to their

development processes.

 UR-CE-N-2 Portability

The LAZARUS system should be portable (i.e., run on

diverse operating systems) and able to replicate and

be deployed across different infrastructures with

low effort.

 UR-C-F-5 Incident Management

As per the ISO 27035 standard, the LAZARUS system

should support incident management capabilities,

including preparing for, identifying, assessing,

responding to, and learning from information

security incidents. This can help organizations

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 14 30/04/2023

minimize the impact of security incidents and

ensure timely recovery.

UR-C-F-6
 Training and

Awareness

A DevSecOps tool can include training and

awareness modules to help educate developers and

other stakeholders on security best practices and

the importance of compliance. This can help foster

a security-conscious culture and reduce the

likelihood of security incidents due to human error.

 UR-C-F-7 Authentication

The LAZARUS system shall require users to

authenticate themselves before accessing any of its

modules.

 UR-C-F-8 Authorization

The LAZARUS system shall implement authorization

to control access to its modules. Only authorized

users shall be allowed to access the modules they

are authorized to access.

 UR-C-F-9
 Role-based access

control

LAZARUS should implement role-based access

control to ensure that users can only access the

modules that are relevant to their role.

UR-C-F-10 Module-specific access

LAZARUS could enforce access controls on a per-

module basis to ensure that users can only access

the modules they are authorized to access.

 UR-C-F-11
Administrative

Interfaces

LAZARUS should provide administrative interfaces

for managing user accounts, roles, and module-level

access controls. The interfaces shall enable

administrators to create, modify, and delete user

accounts, assign roles, and grant module-level

access permissions to users and roles.

UR-C-F-12 Auditability

The LAZARUS system should maintain an audit trail

of all authentication and authorization events,

including login attempts, module accesses, and any

changes made to user accounts, roles, or module-

level access controls. The audit trail shall be

accessible only to authorized users and shall be

protected against unauthorized access,

modification, or deletion.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 15 30/04/2023

 UR-C-F-13 Verifiability All data generated by LAZARUS must be verifiable

UR-C-F-14

Documentation and

Reporting

The LAZARUS platform should support

comprehensive documentation and reporting

capabilities, enabling organizations to demonstrate

their compliance with the mentioned security

standards and regulations. This may include

generating audit-ready reports, tracking

remediation efforts, and providing evidence of

security controls and risk management practices.

 UR-C-F-15
Machine-accessible

Reporting

The reporting provided by LAZARUS should provide

the option to output any report in a standard

machine-readable format (e.g., JSON, XML) so it can

be parsed by an automated tool/dashboard.

 UR-C-N-2
 Source Code

Confidentiality

Modules that have access to a repository must use

the repository source code solely for the purpose of

their functionality and must not export, send, or

otherwise use any external tools or services that

would expose the source code outside of the system

without explicit authorization. Any use of the source

code must be restricted to the specific context and

scope of the module, and the source code must not

be exposed to unauthorized users or systems.

 UR-C-N-3 Efficient Processing

Avoid long-running processes in modules provided

by LAZARUS and commonly used in SDLC “software

development life cycle” (i.e., shouldn't be

considerably longer than a pipeline or workflow

without LAZARUS integration, such as security won’t

slow down the checks or force the scan to be

performed in asynchronous way)

 UR-C-N-4 System Stability

The system shall provide a fail-safe configuration,

i.e., in case of an unexpected event or error, the

system shall go to a safe state.

 UR-C-N-5 Multi-tenancy

When integrating resources that are used by

multiple tenants/users (e.g., cloud environment),

those shared resources shall support tenant

separation / process isolation.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 16 30/04/2023

 UR-C-F-16
Reliable Hardcoded

Secret Detection

The LAZARUS system should be able to reliably

identify hardcoded secrets in provided source code

 UR-C-F-17
Reliable Unencrypted

Secret Detection

The LAZARUS system should be able to reliably

identify unencrypted secrets in provided source

code

UR-C-F-18
Reliable Stored Secret

Detection

The LAZARUS system should be able to reliably

identify stored secrets in provided source code

UR-C-F-19
Secret Detection in

Code History

The LAZARUS system could identify whether code

history contains inadvertent secrets

UR-CE-F-1

Reliable Vulnerability

Detection in Source

Code

The LAZARUS system should be able to reliably

detect errors in provided source code and indicate

whether they can lead to security vulnerabilities

 UR-C-F-20
Formatting and Styling

Issue Detection

The LAZARUS system should be able to detect

formatting or styling issues in provided source code

 UR-C-F-21

Coding and

Deployment Best

Practices Suggestions

The LAZARUS system could suggest best practices

based on provided source code, as well as best

practice tips for software and hardware

deployment.

 UR-C-F-22
Source Code Pattern-

based Simulation

The LAZARUS system could offer pattern-based

simulation based on provided source code

UR-CE-F-2
 Source Code Quality

and Complexity Metrics

The LAZARUS system could offer quality and

complexity metrics based on provided source code

UR-CE-F-3

 Safety and Security

Coding Standards

Support

The LAZARUS system could support multiple safety

and security-focused coding standards

UR-C-F-23
Out-of-the-box

Certification

The LAZARUS system could support out-of-the-box

certification for use in the development of safety-

critical applications

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 17 30/04/2023

UR-CE-F-4

Source Code-based

Data Flow Analysis

The LAZARUS system must be able to offer data flow

analysis based on provided source code

 UR-CE-F-5
 Source Code-based

Control Flow Graphs

The LAZARUS system must be able to create Control

Flow Graphs (CFG) based on provided source code

 UR-C-F-24
Source Code-based

Taint Analysis

The LAZARUS system must be able to offer taint

analysis based on provided source code

 UR-C-F-25
Source Code-based

Lexical Analysis

The LAZARUS system must be able to offer lexical

analysis based on provided source code

 UR-C-F-26
Cryptography-related

Issue Detection

Check for misused cryptographic functions,

encryption/decryption modes, and Initialization

Vector selection/handling (e.g., improper use of

cryptographic primitives offered by the platform,

using outdated algorithms as MD5 or bad practices

with cyphers such as ECB, storing the same IV for

every connection, etc.)

UR-CE-F-6

 DAST-based SQL

Injection Vulnerability

Detection

The LAZARUS system must offer penetration testing

services to detect possible injections at the API level

UR-CE-F-7

 Query Input

Whitelisting

Verification

The LAZARUS system should be able to detect

whether the provided source code whitelists query

input validation

UR-CE-F-8
 Query Input Escape

Verification

The LAZARUS system should be able to detect

whether the provided source code escapes all

supplied query input

UR-CE-F-9
Fuzzing Service

Configurability

The LAZARUS fuzzing services should be fully

configurable, with the options to specify target(s),

fuzzer(s), test cases, credentials, input types and

combination logic

 UR-C-F-27
Protocol Fuzzing

Services

The LAZARUS system could offer protocol fuzzing

services

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 18 30/04/2023

 UR-C-F-28
 File Format Fuzzing

Services

The LAZARUS system could offer file format fuzzing

services

UR-CE-F-10
CVE Scanning

Reliability

The LAZARUS system must be able to reliably detect

outdated, end-of-life (EOL) and vulnerable

components based on a provided Software Bill of

Materials (SBOM)

 UR-CE-F-11
 CVE Scanning Service

Accessibility

The LAZARUS system must be able to read the most

widely used SBOM file formats (SPDX, CycloneDX,

SWID, NPM package lock, Maven POM, etc.)

 UR-CE-F-12
CVE Scanning Service

Configurability

The LAZARUS system should provide a configurable

policy list when scanning a Software Bill of Materials

(SBOM), such as

- Restrictions on component age

- Restrictions on outdated and EOL/EOS

components

- Prohibition of components with known

vulnerabilities

- Restrictions on public repository usage

- Restrictions on acceptable licenses

- Component update requirements

- Deny list of prohibited components and

versions

- Acceptable community contribution

guidelines

UR-C-F-29

Unnecessary Direct and

Transitive

Dependencies

Detection

The LAZARUS system could offer the option to

detect unnecessary (unused) direct and transitive

dependencies based on a provided Software Bill of

Materials (SBOM)

 UR-C-F-30
Project Dependencies

Health Check

The LAZARUS system could offer the option to

assess the health of project dependencies based on

a provided Software Bill of Materials (SBOM)

UR-CE-F-13
 Container Vulnerability

Scanning Reliability

The LAZARUS system must be able to reliably detect

insecure containers (outdated libraries, incorrectly

configured containers, outdated operating system)

based on a provided container image

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 19 30/04/2023

UR-C-F-31

 Container-based

Compliance Validation

Detection

The LAZARUS system should be able to reliably

detect possible compliance validations based on a

provided container image

UR-C-F-32
 Container-related Best

Practice Suggestions

The LAZARUS system could suggest best practices

based on a provided container image

 UR-CE-F-14
 Network Tool

Reliability

The LAZARUS system must be able to reliably detect

vulnerabilities in tested IDS and/or networks

UR-CE-F-15
Network Tool

Configurability

The LAZARUS system should provide detailed

configuration options for IDS/network vulnerability

checks

UR-C-F-33

Incident Response and

Recovery Policy

Suggestions

LAZARUS could enable organizations to develop and

implement incident response and recovery plans as

required by the regulations of their industry,

through improvement and best practice

suggestions.

Table 3.1: List of LAZARUS User Requirements

User requirements are labelled as UR-<type>-<section>-<number>. Type can be E (external), C (consortium)
or both (CE). External user requirements are provided by external stakeholders, while Consortium user
requirements have been identified through internal development process by both end users and research
partners in the LAZARUS Consortium. Section stands for type of the user requirements (functional or non-
functional) and Number for the number of the user requirement the specific type. An example of such label
is UR-E-F-2 which is an external user requirement of functional type and with user requirement number 2.
This way it is easier for a reader to quickly refer to the source of the user requirements.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 20 30/04/2023

4 Functional Requirements

This section covers

• services (either general or regarding specific use cases), and

• how the LAZARUS system should behave in particular situations.

4.1 Services

As it is envisioned that each LAZARUS use case will provide a particular service, it is important to define the

goals and features of the service in question. Thus, a breakdown of related requirements is necessary, ranging

from mandatory core functions to nice-to-have optional features. In essence, the satisfaction of these

requirements will comprise the core business logic of the platform.

Requirement
Label

Indicator Description Use Case

 UR-C-F-16

Reliable

Hardcoded

Secret

Detection

The LAZARUS system should be

able to reliably identify hardcoded

secrets in provided source code

USE CASE 1 - Issue detection

regarding secrets management

 UR-C-F-17

Reliable

Unencrypted

Secret

Detection

The LAZARUS system should be

able to reliably identify

unencrypted secrets in provided

source code

USE CASE 1 - Issue detection

regarding secrets management

UR-C-F-18

Reliable Stored

Secret

Detection

The LAZARUS system should be

able to reliably identify stored

secrets in provided source code

USE CASE 1 - Issue detection

regarding secrets management

UR-C-F-19

Secret

Detection in

Code History

The LAZARUS system could

identify whether code history

contains inadvertent secrets

USE CASE 1 - Issue detection

regarding secrets management

UR-CE-F-1

Reliable

Vulnerability

Detection in

Source Code

The LAZARUS system should be

able to reliably detect errors in

provided source code and

USE CASE 2 - Code Linting

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 21 30/04/2023

indicate whether they can lead to

security vulnerabilities

 UR-C-F-20

Formatting

and Styling

Issue

Detection

The LAZARUS system should be

able to detect formatting or

styling issues in provided source

code

USE CASE 2 - Code Linting

 UR-C-F-21

Coding and

Deployment

Best Practices

Suggestions

The LAZARUS system could

suggest best practices based on

provided source code, as well as

best practice tips for software and

hardware deployment.

USE CASE 2 - Code Linting

 UR-C-F-22

Source Code

Pattern-based

Simulation

The LAZARUS system could offer

pattern-based simulation based

on provided source code

USE CASE 2 - Code Linting

UR-CE-F-2

 Source Code

Quality and

Complexity

Metrics

The LAZARUS system could offer

quality and complexity metrics

based on provided source code

USE CASE 2 - Code Linting

UR-CE-F-3

 Safety and

Security

Coding

Standards

Support

The LAZARUS system could

support multiple safety and

security-focused coding

standards

USE CASE 2 - Code Linting

UR-C-F-23
Out-of-the-box

Certification

The LAZARUS system could

support out-of-the-box

certification for use in the

development of safety-critical

applications

USE CASE 2 - Code Linting

UR-CE-F-4

Source Code-

based Data

Flow Analysis

The LAZARUS system must be able

to offer data flow analysis based

on provided source code

USE CASE 3 - Static Code Analysis

 UR-CE-F-5

 Source Code-

based Control

Flow Graphs

The LAZARUS system must be able

to create Control Flow Graphs

(CFG) based on provided source

code

USE CASE 3 - Static Code Analysis

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 22 30/04/2023

 UR-C-F-24

Source Code-

based Taint

Analysis

The LAZARUS system must be able

to offer taint analysis based on

provided source code

USE CASE 3 - Static Code Analysis

 UR-C-F-25

Source Code-

based Lexical

Analysis

The LAZARUS system must be able

to offer lexical analysis based on

provided source code

USE CASE 3 - Static Code Analysis

 UR-C-F-26

Cryptography-

related Issue

Detection

Check for misused cryptographic

functions, encryption/decryption

modes, and Initialization Vector

selection/handling (e.g., improper

use of cryptographic primitives

offered by the platform, using

outdated algorithms as MD5 or

bad practices with cyphers such as

ECB, storing the same IV for every

connection, etc.)

USE CASE 3 - Static Code Analysis

UR-CE-F-6

 DAST-based

SQL Injection

Vulnerability

Detection

The LAZARUS system must offer

penetration testing services to

detect possible injections at the

API level

USE CASE 4 - SQL Injection

Vulnerability Detection

UR-CE-F-7

 Query Input

Whitelisting

Verification

The LAZARUS system should be

able to detect whether the

provided source code whitelists

query input validation

USE CASE 4 - SQL Injection

Vulnerability Detection

UR-CE-F-8

 Query Input

Escape

Verification

The LAZARUS system should be

able to detect whether the

provided source code escapes all

supplied query input

USE CASE 4 - SQL Injection

Vulnerability Detection

UR-CE-F-9
Fuzzing Service

Configurability

The LAZARUS fuzzing services

should be fully configurable, with

the options to specify target(s),

fuzzer(s), test cases, credentials,

input types and combination logic

USE CASE 5 - Fuzzing

 UR-C-F-27

Protocol

Fuzzing

Services

The LAZARUS system could offer

protocol fuzzing services
USE CASE 5 - Fuzzing

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 23 30/04/2023

 UR-C-F-28

 File Format

Fuzzing

Services

The LAZARUS system could offer

file format fuzzing services
USE CASE 5 - Fuzzing

UR-CE-F-10
CVE Scanning

Reliability

The LAZARUS system must be able

to reliably detect outdated, End-

Of-Life (EOL) and vulnerable

components based on a provided

Software Bill of Materials (SBOM)

USE CASE 6 - CVE Scan

 UR-CE-F-11

 CVE Scanning

Service

Accessibility

The LAZARUS system must be able

to read the most widely used

SBOM file formats (SPDX,

CycloneDX, SWID, NPM package

lock, Maven POM, etc.)

USE CASE 6 - CVE Scan

 UR-CE-F-12

CVE Scanning

Service

Configurability

The LAZARUS system should

provide a configurable policy list

when scanning a Software Bill of

Materials (SBOM), such as

- Restrictions on

component age

- Restrictions on outdated

and EOL/EOS

components

- Prohibition of

components with known

vulnerabilities

- Restrictions on public

repository usage

- Restrictions on

acceptable licenses

- Component update

requirements

- Deny list of prohibited

components and versions

- Acceptable community

contribution guidelines

USE CASE 6 - CVE Scan

UR-C-F-29
Unnecessary

Direct and

Transitive

The LAZARUS system could offer

the option to detect unnecessary

direct and transitive

dependencies based on a

USE CASE 6 - CVE Scan

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 24 30/04/2023

Dependencies

Detection

provided Software Bill of

Materials (SBOM)

 UR-C-F-30

Project

Dependencies

Health Check

The LAZARUS system could offer

the option to assess the health of

project dependencies based on a

provided Software Bill of

Materials (SBOM)

USE CASE 6 - CVE Scan

UR-CE-F-13

 Container

Vulnerability

Scanning

Reliability

The LAZARUS system must be able

to reliably detect insecure

containers (outdated libraries,

incorrectly configured containers,

outdated operating system)

based on a provided container

image

USE CASE 7 - Container

Vulnerability Scanning

UR-C-F-31

 Container-

based

Compliance

Validation

Detection

The LAZARUS system should be

able to reliably detect possible

compliance validations based on a

provided container image

USE CASE 7 - Container

Vulnerability Scanning

UR-C-F-32

 Container-

related Best

Practice

Suggestions

The LAZARUS system could

suggest best practices based on a

provided container image

USE CASE 7 - Container

Vulnerability Scanning

 UR-CE-F-14
 Network Tool

Reliability

The LAZARUS system must be able

to reliably detect vulnerabilities in

tested IDS and/or networks

USE CASE 8 - Detection of

Network Attacks & DDoS

UR-CE-F-15
Network Tool

Configurability

The LAZARUS system should

provide detailed configuration

options for IDS/network

vulnerability checks

USE CASE 8 - Detection of

Network Attacks & DDoS

UR-C-F-33

Incident

Response and

Recovery

Policy

Suggestions

LAZARUS could enable

organizations to develop and

implement incident response and

recovery plans as required by the

regulations of their industry,

through improvement and best

practice suggestions.

USE CASE 8 - Detection of

Network Attacks & DDoS

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 25 30/04/2023

Table 4.1: List of LAZARUS Functional User Requirements - Services

4.2 Expected Behaviour

In order for the LAZARUS system to properly interact with its users and their environments, one should define

the desired properties the system should have, as well as the effect it must achieve in relation to the

development life cycle it interacts with. Such requirements essentially describe the inherent processes of the

platform itself.

Requirement
Label

Indicator Description Use Case

 UR-C-F-1
 Automated

Compliance Checks

LAZARUS should automate compliance checks

throughout the development life cycle, so as to

identify and remediate potential compliance issues

early in the development process, ensuring that

applications, infrastructure, and configurations

adhere to relevant security laws, regulations, and

industry standards.

General

 UR-C-F-2
 Standards-based

Policy Enforcement

LAZARUS should enable organizations to define and

enforce policies based on the mentioned ISO

standards (ISO 27001, ISO 27002, ISO 27005, and ISO

27035). By incorporating these standards into the

development pipeline, organizations can ensure

compliance with best practices and regulatory

requirements.

General

 UR-C-F-3

 Mapping to

Regulatory

Frameworks

LAZARUS should have the capability to map security

controls and requirements to specific laws and

regulations, such as the NIS Directive, Directive

2002/21/EC, and Directive (EU) 2016/1148. This

simplifies the compliance process and helps

organizations demonstrate their adherence to the

relevant legal frameworks.

General

UR-C-F-4 Risk Management

In line with the ISO 27005 standard, the tool should

facilitate risk management by providing a framework

for identifying, assessing, and managing information

security risks throughout the development life cycle.

General

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 26 30/04/2023

 UR-C-F-5
 Incident

Management

As per the ISO 27035 standard, the LAZARUS system

should support incident management capabilities,

including preparing for, identifying, assessing,

responding to, and learning from information

security incidents. This can help organizations

minimize the impact of security incidents and ensure

timely recovery.

General

UR-C-F-6
 Training and

Awareness

A DevSecOps tool can include training and awareness

modules to help educate developers and other

stakeholders on security best practices and the

importance of compliance. This can help foster a

security-conscious culture and reduce the likelihood

of security incidents due to human error.

General

 UR-C-F-7 Authentication

The LAZARUS system shall require users to

authenticate themselves before accessing any of its

modules.

General

 UR-C-F-8 Authorization

The LAZARUS system shall implement authorization

to control access to its modules. Only authorized

users shall be allowed to access the modules they are

authorized to access.

General

 UR-C-F-9
 Role-based access

control

LAZARUS should implement role-based access

control to ensure that users can only access the

modules that are relevant to their role.

General

UR-C-F-10
Module-specific

access

LAZARUS could enforce access controls on a per-

module basis to ensure that users can only access the

modules they are authorized to access.

General

 UR-C-F-11
Administrative

Interfaces

LAZARUS should provide administrative interfaces

for managing user accounts, roles, and module-level

access controls. The interfaces shall enable

administrators to create, modify, and delete user

accounts, assign roles, and grant module-level access

permissions to users and roles.

General

UR-C-F-12 Auditability

The LAZARUS system should maintain an audit trail

of all authentication and authorization events,

including login attempts, module accesses, and any

changes made to user accounts, roles, or module-

level access controls. The audit trail shall be

accessible only to authorized users and shall be

General

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 27 30/04/2023

protected against unauthorized access, modification,

or deletion.

 UR-C-F-13 Verifiability
All data generated by LAZARUS must be verifiable

and reproducible.
General

UR-C-F-14

Documentation

and Reporting

The LAZARUS platform should support

comprehensive documentation and reporting

capabilities, enabling organizations to demonstrate

their compliance with the mentioned security

standards and regulations. This may include

generating audit-ready reports, tracking remediation

efforts, and providing evidence of security controls

and risk management practices.

General

 UR-C-F-15
Machine-accessible

Reporting

The reporting provided by LAZARUS should provide

the option to output any report in a standard

machine-readable format (JSON/XML) so it can be

parsed by an automated tool/dashboard.

General

Table 4.2: List of LAZARUS Functional User Requirements – Expected Behavior

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 28 30/04/2023

5 Non-functional Requirements

This section covers constraints on the services or functions offered by the LAZARUS system, such as

• timing constraints,

• constraints on the development process, and

• constraints imposed by standards.

5.1 Timing Constraints

It is apparent that each pilot application already has its own restrictions and constraints, depending on the

execution environment, the particularities of its implementation and customer needs. Consequently,

possible timing constraints (maximum accepted pilot downtime, maximum reaction time until LAZARUS is

triggered, maximum execution time of the triggered function) must be taken into account.

Requirement Label Indicator Description

 UR-C-N-3 Efficient Processing

Avoid long-running processes in modules provided

by LAZARUS and commonly used in SDLC “software

development life cycle” (i.e., should not be

considerably longer than a pipeline or workflow

without LAZARUS integration, such as security

would not slow down the checks or force the scan

to be performed in asynchronous way)

Table 5.1: List of LAZARUS Non-functional User Requirements – Timing Constraints

5.2 Development Constraints

Necessary limitations regarding the architecture, technologies and communication methods of LAZARUS so

that it is compatible with the pilot applications are stated in this section. The end goal of this requirement

category is to achieve a viable, accessible and interoperable system design.

Requirement
Label

Indicator Description

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 29 30/04/2023

UR-CE-N-1
 Scalability and

Adaptability

The LAZARUS system should be modular and flexible. As security

laws and regulations evolve, a DevSecOps tool should be

scalable and adaptable to accommodate new requirements and

standards. This ensures that organizations can maintain

compliance without significant disruptions to their development

processes.

UR-CE-N-2 Portability

The LAZARUS system should be portable (i.e., run on diverse

operating systems) and able to replicate and be deployed across

different infrastructures with low effort.

UR-C-N-2
 Source Code

Confidentiality

Modules that have access to a repository must use the

repository source code solely for the purpose of their

functionality and must not export, send, or otherwise use any

external tools or services that would expose the source code

outside of the system without explicit authorization. Any use of

the source code must be restricted to the specific context and

scope of the module, and the source code must not be exposed

to unauthorized users or systems.

 UR-C-N-4 System Stability
The system shall provide a fail-safe configuration. i.e. in case of

an unexpected event or error, the system shall go to a safe state.

 UR-C-N-5 Multi-tenancy

When integrating resources that are used by multiple

tenants/users (e.g. cloud environment), those shared resources

shall support tenant separation / process isolation.

Table 5.2: List of LAZARUS Non-functional User Requirements – Development Constraints

5.3 Standard Constraints

Possible constraints related to imposed standards that LAZARUS aims to comply to, are mentioned in this

section.

Requirement Label Indicator Description

UR-C-N-1

 Compliance with

existing security

standards

Compliance with existing security standards (such as

ISO27001, ISO 27002, ISO 27005, ISO 27035) [4]

associated with the protection of the

HealthCare/Energy/Transportation operators,

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 30 30/04/2023

mandated by law and regulation for the protection

of critical infrastructures (NIS Directive, Directive

2002/21/EC [5], Directive (EU) 2016/1148 [6])

Table 5.3: List of LAZARUS Non-functional User Requirements – Standard Constraints

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 31 30/04/2023

6 MoSCoW Requirements Analysis

When implementing the functionality of a system, it is important to prioritize the requirements focusing on

the first development of the essential parts and remove the less significant ones if necessary due to the lack

of time or resources.

In LAZARUS, the requirements are ranked based on the initial stakeholders’ needs, input by external

stakeholders and input by research partners within the project, coupled with the expertise of the partners.

It is necessary to prioritize what is essential for the operation of the product for the development. The

prioritization technique used as a reference to classify the requirements is MoSCoW [7].

MoSCoW was developed by Dai Clegg of Oracle UK in 1994 and it gained popularity in the DSDM methodology

(Dynamic Software Development Method). The MoSCoW method is a prioritization technique used in

management, business analysis, project management, and software development to reach a common

understanding with stakeholders on the importance they place on the delivery of each requirement - also

known as MoSCoW prioritization or MoSCoW analysis.

MoSCoW is a fairly simple way to sort features into priority order – a way to help teams quickly understand

from the customer’s view what is essential for launching a product and what is not. The MoSCoW method is

a prioritization technique used in management, business analysis, project management, and software

development to reach a common understanding with stakeholders on the importance they place on the

delivery of each requirement; it is also known as MoSCoW prioritization or MoSCoW analysis.

The term MOSCOW itself is an acronym derived from the first letter of each of four prioritization categories:

M - Must have, S - Should have, C - Could have, W - Won't have.

Naturally, all requirements are important, however to deliver the greatest and most immediate business

benefits early the requirements must be prioritized. Initially the goal is to try and deliver all the Must have,

Should have, and Could have requirements but the Should and Could requirements will be the first to be

removed if the delivery timescale looks threatened.

MoSCoW is often used with timeboxing, where a deadline is fixed so that the focus must be on the most

important requirements, and is commonly used in agile software development approaches such as Scrum,

rapid application development (RAD), and DSDM.

Category Explanation

Must have Non-negotiable product needs that are mandatory for the team

Should have Important initiatives that are not vital, but add significant value

Could have Nice to have initiatives that will have a small impact if left out

Will not have Initiatives that are not priority for this specific time frame

Table 6.1: MoScoW Categories

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 32 30/04/2023

Requirement Code Indicator Category MoSCoW Priority

LZR-GR1

 Compliance with

existing security

standards

Non-functional MUST

 LZR-GR2
 Automated

Compliance Checks
Functional SHOULD

 LZR-GR3
 Standards-based Policy

Enforcement
Functional SHOULD

 LZR-GR4
 Mapping to Regulatory

Frameworks
Functional COULD

 LZR-GR5 Risk Management Functional MUST

 LZR-GR6
 Scalability and

Adaptability
Non-functional MUST

 LZR-GR7 Portability Non-functional SHOULD

 LZR-GR8 Incident Management Functional MUST

 LZR-GR9
 Training and

Awareness
Functional COULD

 LZR-GR10 Authentication Functional MUST

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 33 30/04/2023

 LZR-GR11 Authorization Functional MUST

 LZR-GR12
 Role-based access

control
Functional SHOULD

 LZR-GR13 Module-specific access Functional COULD

 LZR-GR14
Administrative

Interfaces
Functional SHOULD

 LZR-GR15 Auditability Functional MUST

 LZR-GR16 Verifiability Functional MUST

 LZR-GR17
Documentation and

Reporting
Functional MUST

 LZR-GR18
Machine-accessible

Reporting
Functional SHOULD

 LZR-GR19
 Source Code

Confidentiality
Non-functional MUST

 LZR-GR20 Efficient Processing Non-functional MUST

 LZR-GR21 System Stability Non-functional MUST

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 34 30/04/2023

 LZR-GR22 Multi-tenancy Non-functional MUST

 LZR-SM1
Reliable Hardcoded

Secret Detection
Functional MUST

 LZR-SM2
Reliable Unencrypted

Secret Detection
Functional MUST

LZR-SM3
Reliable Stored Secret

Detection
Functional MUST

LZR-SM4
Secret Detection in

Code History
Functional COULD

 LZR-CL1

Reliable Vulnerability

Detection in Source

Code

Functional MUST

 LZR-CL2
Formatting and Styling

Issue Detection
Functional SHOULD

 LZR-CL3

Coding and

Deployment Best

Practices Suggestions

Functional COULD

 LZR-CL4
Source Code Pattern-

based Simulation
Functional COULD

LZR-CL5
 Source Code Quality

and Complexity Metrics
Functional COULD

 LZR-CL6

 Safety and Security

Coding Standards

Support

Functional COULD

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 35 30/04/2023

 LZR-CL7
Out-of-the-box

Certification
Functional COULD

LZR-SA1

Source Code-based

Data Flow Analysis
Functional MUST

 LZR-SA2
 Source Code-based

Control Flow Graphs
Functional MUST

 LZR-SA3
Source Code-based

Taint Analysis
Functional COULD

 LZR-SA4
Source Code-based

Lexical Analysis
Functional COULD

 LZR-SA5
Cryptography-related

Issue Detection
Functional COULD

 LZR-SI1

 DAST-based SQL

Injection Vulnerability

Detection

Functional MUST

 LZR-SI2

 Query Input

Whitelisting

Verification

Functional SHOULD

 LZR-SI3
 Query Input Escape

Verification
Functional SHOULD

 LZR-FZ1
Fuzzing Service

Configurability
Functional SHOULD

 LZR-FZ2
Protocol Fuzzing

Services
Functional COULD

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 36 30/04/2023

 LZR-FZ3
 File Format Fuzzing

Services
Functional COULD

 LZR-CV1
CVE Scanning

Reliability
Functional MUST

 LZR-CV2
 CVE Scanning Service

Accessibility
Functional MUST

 LZR-CV3
CVE Scanning Service

Configurability
Functional SHOULD

 LZR-CV4

Unnecessary Direct and

Transitive

Dependencies

Detection

Functional COULD

 LZR-CV5
Project Dependencies

Health Check
Functional COULD

 LZR-CS1
 Container Vulnerability

Scanning Reliability
Functional MUST

 LZR-CS2

 Container-based

Compliance Validation

Detection

Functional SHOULD

 LZR-CS3
 Container-related Best

Practice Suggestions
Functional COULD

 LZR-NA1
 Network Tool

Reliability
Functional MUST

LZR-NA2
Network Tool

Configurability
Functional SHOULD

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 37 30/04/2023

LZR-NA3

Incident Response and

Recovery Policy

Suggestions

Functional COULD

Table 6.2: LAZARUS MoScoW Requirement List

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 38 30/04/2023

7 WP3 Input

Research
Organization

Requirement Implementation Contributions

 ARC

Task 3.2 studied tools to provide a set of functionalities to analyse the composition of

a project and the vulnerabilities of their components, either libraries, dependencies,

or code. Moreover, further code-analysis capabilities, namely code analysis to

determine potential flaws, quality and sanitisation were also studied. In summary, the

deliverable presents a series of suitable open-source tools, some of them to be

potentially integrated during development phase. Further functionalities such as a

sanitisation module will be assessed and provided by research partners (ARC, DC),

which will find personal, private and other data that could present potential security

flaws in projects. Other background and tools can be provided by other partners if

deemed necessary.

The input of these tools assumes a project or directly a standardised file input (i.e.,

see D3.2 for more on SBOM standardised formats and other naming schemes), to

create either a standarized report of its contents, a vulnerability analysis, or a static

analysis. Furthermore, code analysis capabilities are also available via some of the

tools analysed in D3.2. We foresee one or multiple modules that will be used to

process these inputs and update the project’s activities accordingly. Further

discussions are needed to:

1. Select the desired functionalities for LAZARUS in the context of D3.2

2. Select the open-source tools providing them

3. Establish an integration strategy which enables the seamless operations over a

project and their auditability

4. Ensure the compatibility of this/these modules with the rest of the platform.

In the case of D3.8, the main aim was to study the standardised formats and tools to

share Cyber threat intelligence. The document provides the main sharing and analysis

platforms and their main characteristics. Overall, in terms of LAZARUS requirements

and capabilities, D3.8 servers as a first basis of discussion to select:

1. Select the desired functionalities for LAZARUS in the context of D3.8. That is, which

type of analysis and reporting capabilities we want to provide, following the state of

the art.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 39 30/04/2023

2. Select which format(s) will be used, and if any, with which intelligence tools

LAZARUS will have the ability to communicate.

3. Establish an integration strategy which enables the seamless analysis and

communication capabilities of LAZARUS, and their auditability.

4. Ensure the compatibility of this modules with the rest of the platform.

Although D3.8 provides the necessary information to leverage decisions, a discussion

is needed between WP3 and WP4 partners to finally select which will be the strategy

to follow and integrate into the LAZARUS platform.

UNIPD

Task 3.1 will provide the pipeline for product analysis and the identification of

vulnerabilities. As an output, it will also provide a list of possible mitigation

approaches.

• Input: Software Bill of Material (SBOM), comprising code, modules, libraries, and

(if needed) indications on used hardware components. The SBOM shall be provided

in a standardized format (e.g., CycloneDX)

• Output: battery of security tests derived from the input SBOM

• Supported programming language: Python

• Code granularity: function level

• Type of vulnerabilities: based on use cases

• Technical prerequisites for executing the program: depends on the type/size of

the model.

UCM

Task 3.3. An algorithmic verification tool will be developed to handle complex

features of programs related to their control structure or memory management.

These technologies will combine automatic source code abstraction techniques,

symbolic model checking or counterexample-guided refinement of abstraction.

• Input: Source code or binary program

• Output: Vulnerabilities detected in source code or binary programs

• Supported programming language: Python

• Code granularity: function level

• Type of vulnerabilities: based on use cases

• Technical prerequisites for executing the program: The requirements will

depend on the size of the code and the binary program to be analysed.

Task 3.4. A tool will be developed using deep learning models to assess the security,

detect failures and determine the level of robustness of the Artificial Intelligence

techniques implemented in tasks T3.2 and 3.3.

• Input: Random input for generation of adversarial samples.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 40 30/04/2023

• Output: Adversarial sample

• Supported programming language: based on use cases

• Code granularity: function level

• Type of vulnerabilities: based on use cases

• Technical prerequisites for executing the program: Sufficient computational

resources to generate the adversary samples. AI models implemented in tasks

3.2 and 3.3. For white box testing, overview of the AI model implemented in

tasks 3.2 and 3.3

LIST

Task 3.5 will provide two AI models for the self-healing module and anti-fuzzing

module, respectively.

The self-healing module will focus on automated program repair that generates

patches to vulnerable programs automatically. In detail:

• Input: a piece of vulnerable code (remark: the vulnerability type should be

identified by the vulnerability detection module in T2.2.)

• Output: a patched code

• Supported programming language: Java, Python, and C

• Code granularity: function level (the input code is a defined function in a

certain language)

• Type of vulnerabilities: TBD. It is impractical to build an AI model that can fix

all types of vulnerabilities due to the difficulty in collecting such data and the

computational cost. Thus, several types of vulnerabilities will be determined

based on the user requirements.

• AI model: the model will be built upon a pre-trained large language model

with the SOTA performance in automated program repair.

The anti-fuzzing module is about automatically identifying fuzzers.

• Input: the execution state of an application program

• Output: whether a fuzzer is attacking the program or not. If yes, identify the

name of the fuzzer.

• Supported programming language of applications: Java, Python, and C

• Fuzzers to consider: about five known fuzzers. These fuzzers will be

determined based on the user requirements or in the literature review (e.g.,

AFL, HonggFuzz, Fairfuzz, VUzzer).

• AI model: the model will be built upon a pre-trained large language model

with the SOTA performance in various software engineering downstream

tasks.

Table 7.1: WP3 Contributions

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 41 30/04/2023

8 Consolidated User Requirements

The consolidated user requirements governing LAZARUS are herewith presented. The requirements will be

translated into system requirements (T2.3) while they will also be the basis of work in WP4 and WP5. The

requirements will be updated after the completion of T&V phase to reflect issues that were identified in this

process.

8.1 General Requirements

ID LZR-GR1 MoSCoW Priority MUST

Name Compliance with existing security standards

Description Compliance with existing security standards (such as ISO27001, ISO 27002, ISO
27005, ISO 27035) [4] associated with the protection of the
HealthCare/Energy/Transportation operators, mandated by law and regulation
for the protection of critical infrastructures (NIS Directive, Directive 2002/21/EC
[5], Directive (EU) 2016/1148 [6])

Category Non-functional

ID LZR-GR2 MoSCoW Priority SHOULD

Name Automated Compliance Checks

Description LAZARUS should automate compliance checks throughout the development life
cycle, so as to identify and remediate potential compliance issues early in the
development process, ensuring that applications, infrastructure, and
configurations adhere to relevant security laws, regulations, and industry
standards.

Category Functional

ID LZR-GR3 MoSCoW Priority SHOULD

Name Standards-based Policy Enforcement

Description LAZARUS should enable organizations to define and enforce policies based on
the mentioned ISO standards (ISO 27001, ISO 27002, ISO 27005, and ISO
27035). By incorporating these standards into the development pipeline,
organizations can ensure compliance with best practices and regulatory
requirements.

Category Functional

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 42 30/04/2023

ID LZR-GR4 MoSCoW Priority COULD

Name Mapping to Regulatory Frameworks

Description LAZARUS should have the capability to map security controls and requirements
to specific laws and regulations, such as the NIS Directive, Directive
2002/21/EC, and Directive (EU) 2016/1148. This simplifies the compliance
process and helps organizations demonstrate their adherence to the relevant
legal frameworks.

Category Functional

ID LZR-GR5 MoSCoW Priority MUST

Name Risk Management

Description In line with the ISO 27005 standard, the tool should facilitate risk management
by providing a framework for identifying, assessing, and managing information
security risks throughout the development life cycle.

Category Functional

ID LZR-GR6 MoSCoW Priority MUST

Name Scalability and Adaptability

Description The LAZARUS system should be modular and flexible. As security laws and
regulations evolve, a DevSecOps tool should be scalable and adaptable to
accommodate new requirements and standards. This ensures that
organizations can maintain compliance without significant disruptions to their
development processes.

Category Non-functional

ID LZR-GR7 MoSCoW Priority SHOULD

Name Portability

Description The LAZARUS system should be portable (i.e. run on diverse operating systems)
and able to replicate and be deployed across different infrastructures with low
effort.

Category Non-functional

ID LZR-GR8 MoSCoW Priority MUST

Name Incident Management

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 43 30/04/2023

Description As per the ISO 27035 standard, the LAZARUS system should support incident
management capabilities, including preparing for, identifying, assessing,
responding to, and learning from information security incidents. This can help
organizations minimize the impact of security incidents and ensure timely
recovery.

Category Functional

ID LZR-GR9 MoSCoW Priority COULD

Name Training and Awareness

Description A DevSecOps tool can include training and awareness modules to help educate
developers and other stakeholders on security best practices and the
importance of compliance. This can help foster a security-conscious culture and
reduce the likelihood of security incidents due to human error.

Category Functional

ID LZR-GR10 MoSCoW Priority MUST

Name Authentication

Description The LAZARUS system shall require users to authenticate themselves before
accessing any of its modules.

Category Functional

ID LZR-GR11 MoSCoW Priority MUST

Name Authorization

Description The LAZARUS system shall implement authorization to control access to its
modules. Only authorized users shall be allowed to access the modules they are
authorized to access.

Category Functional

ID LZR-GR12 MoSCoW Priority SHOULD

Name Role-based access control

Description LAZARUS should implement role-based access control to ensure that users can
only access the modules that are relevant to their role.

Category Functional

ID LZR-GR13 MoSCoW Priority COULD

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 44 30/04/2023

Name Module-specific access

Description LAZARUS could enforce access controls on a per-module basis to ensure that
users can only access the modules they are authorized to access.

Category Functional

ID LZR-GR14 MoSCoW Priority SHOULD

Name Administrative Interfaces

Description LAZARUS should provide administrative interfaces for managing user accounts,
roles, and module-level access controls. The interfaces shall enable
administrators to create, modify, and delete user accounts, assign roles, and
grant module-level access permissions to users and roles

Category Functional

ID LZR-GR15 MoSCoW Priority MUST

Name Auditability

Description The LAZARUS system should maintain an audit trail of all authentication and
authorization events, including login attempts, module accesses, and any
changes made to user accounts, roles, or module-level access controls. The
audit trail shall be accessible only to authorized users and shall be protected
against unauthorized access, modification, or deletion.

Category Functional

ID LZR-GR16 MoSCoW Priority MUST

Name Verifiability

Description All data generated by LAZARUS must be verifiable

Category Functional

ID LZR-GR17 MoSCoW Priority MUST

Name Documentation and Reporting

Description The LAZARUS platform should support comprehensive documentation and
reporting capabilities, enabling organizations to demonstrate their compliance
with the mentioned security standards and regulations. This may include
generating audit-ready reports, tracking remediation efforts, and providing
evidence of security controls and risk management practices.

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 45 30/04/2023

Category Functional

ID LZR-GR18 MoSCoW Priority SHOULD

Name Machine-accessible Reporting

Description The reporting provided by LAZARUS should provide the option to output any
report in a standard machine-readable format (JSON/XML) so it can be parsed
by an automated tool/dashboard.

Category Functional

ID LZR-GR19 MoSCoW Priority MUST

Name Source Code Confidentiality

Description Modules that have access to a repository must use the repository source code
solely for the purpose of their functionality and must not export, send, or
otherwise use any external tools or services that would expose the source code
outside of the system without explicit authorization. Any use of the source code
must be restricted to the specific context and scope of the module, and the
source code must not be exposed to unauthorized users or systems.

Category Non-functional

ID LZR-GR20 MoSCoW Priority MUST

Name Efficient Processing

Description Avoid long-running processes in modules provided by LAZARUS and commonly
used in SDLC “software development life cycle” (i.e. shouldn't be considerably
longer than a pipeline or workflow without LAZARUS integration, such as
security won’t slow down the checks or force the scan to be performed in
asynchronous way)

Category Non-functional

ID LZR-GR21 MoSCoW Priority MUST

Name System Stability

Description The system shall provide a fail-safe configuration. i.e. in case of an unexpected
event or error, the system shall go to a safe state.

Category Non-functional

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 46 30/04/2023

ID LZR-GR22 MoSCoW Priority MUST

Name Multi-tenancy

Description When integrating resources that are used by multiple tenants/users (e.g. cloud
environment), those shared resources shall support tenant separation / process
isolation.

Category Non-functional

8.2 USE CASE 1 - Issue detection regarding secrets management

ID LZR-SM1 MoSCoW Priority MUST

Name Reliable Hardcoded Secret Detection

Description The LAZARUS system should be able to reliably identify hardcoded secrets in
provided source code

Category Functional

ID LZR-SM2 MoSCoW Priority MUST

Name Reliable Unencrypted Secret Detection

Description The LAZARUS system should be able to reliably identify unencrypted secrets in
provided source code

Category Functional

ID LZR-SM3 MoSCoW Priority MUST

Name Reliable Stored Secret Detection

Description The LAZARUS system should be able to reliably identify stored secrets in
provided source code

Category Functional

ID LZR-SM4 MoSCoW Priority COULD

Name Secret Detection in Code History

Description The LAZARUS system could identify whether code history contains inadvertent
secrets

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 47 30/04/2023

Category Functional

8.3 USE CASE 2 - Code Linting

ID LZR-CL1 MoSCoW Priority MUST

Name Reliable Vulnerability Detection in Source Code

Description The LAZARUS system should be able to reliably detect errors in provided source
code and indicate whether they can lead to security vulnerabilities

Category Functional

ID LZR-CL2 MoSCoW Priority SHOULD

Name Formatting and Styling Issue Detection

Description The LAZARUS system should be able to detect formatting or styling issues in
provided source code

Category Functional

ID LZR-CL3 MoSCoW Priority COULD

Name Coding and Deployment Best Practices Suggestions

Description The LAZARUS system could suggest best practices based on provided source
code, as well as best practice tips for software and hardware deployment.

Category Functional

ID LZR-CL4 MoSCoW Priority COULD

Name Source Code Pattern-based Simulation

Description The LAZARUS system could offer pattern-based simulation based on provided
source code

Category Functional

ID LZR-CL5 MoSCoW Priority COULD

Name Source Code Quality and Complexity Metrics

Description The LAZARUS system could offer quality and complexity metrics based on
provided source code

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 48 30/04/2023

Category Functional

ID LZR-CL6 MoSCoW Priority COULD

Name Safety and Security Coding Standards Support

Description The LAZARUS system could support multiple safety and security-focused coding
standards

Category Functional

ID LZR-CL7 MoSCoW Priority COULD

Name Out-of-the-box Certification

Description The LAZARUS system could support out-of-the-box certification for use in the
development of safety-critical applications

Category Functional

8.4 USE CASE 3 - Static Code Analysis

ID LZR-SA1 MoSCoW Priority MUST

Name Source Code-based Data Flow Analysis

Description The LAZARUS system must be able to offer data flow analysis based on provided
source code

Category Functional

ID LZR-SA2 MoSCoW Priority MUST

Name Source Code-based Control Flow Graphs

Description The LAZARUS system must be able to create Control Flow Graphs (CFG) based
on provided source code

Category Functional

ID LZR-SA3 MoSCoW Priority COULD

Name Source Code-based Taint Analysis

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 49 30/04/2023

Description The LAZARUS system must be able to offer taint analysis based on provided
source code

Category Functional

ID LZR-SA4 MoSCoW Priority COULD

Name Source Code-based Lexical Analysis

Description The LAZARUS system must be able to offer lexical analysis based on provided
source code

Category Functional

ID LZR-SA5 MoSCoW Priority COULD

Name Cryptography-related Issue Detection

Description Check for misused cryptographic functions, encryption/decryption modes, and
Initialization Vector selection/handling (e.g. improper use of cryptographic
primitives offered by the platform, using outdated algorithms as MD5 or bad
practices with cyphers such as ECB, storing the same IV for every connection,
etc.)

Category Functional

8.5 USE CASE 4 - SQL Injection Vulnerability Detection

ID LZR-SI1 MoSCoW Priority MUST

Name DAST-based SQL Injection Vulnerability Detection

Description The LAZARUS system must offer penetration testing services to detect possible
injections at the API level

Category Functional

ID LZR-SI2 MoSCoW Priority SHOULD

Name Query Input Whitelisting Verification

Description The LAZARUS system should be able to detect whether the provided source
code whitelists query input validation

Category Functional

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 50 30/04/2023

ID LZR-SI3 MoSCoW Priority SHOULD

Name Query Input Escape Verification

Description The LAZARUS system should be able to detect whether the provided source
code escapes all supplied query input

Category Functional

8.6 USE CASE 5 - Fuzzing

ID LZR-FZ1 MoSCoW Priority SHOULD

Name Fuzzing Service Configurability

Description The LAZARUS fuzzing services should be fully configurable, with the options to
specify target(s), fuzzer(s), test cases, credentials, input types and combination
logic

Category Functional

ID LZR-FZ2 MoSCoW Priority COULD

Name Protocol Fuzzing Services

Description The LAZARUS system could offer protocol fuzzing services

Category Functional

ID LZR-FZ3 MoSCoW Priority COULD

Name File Format Fuzzing Services

Description The LAZARUS system could offer file format fuzzing services

Category Functional

8.7 USE CASE 6 - CVE Scan

ID LZR-CV1 MoSCoW Priority MUST

Name CVE Scanning Reliability

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 51 30/04/2023

Description The LAZARUS system must be able to reliably detect outdated, end-of-life (EOL)
and vulnerable components based on a provided Software Bill of Materials
(SBOM)

Category Functional

ID LZR-CV2 MoSCoW Priority MUST

Name CVE Scanning Service Accessibility

Description The LAZARUS system must be able to read the most widely used SBOM file
formats (SPDX, CycloneDX, SWID,NPM package lock, Maven POM, etc.)

Category Functional

ID LZR-CV3 MoSCoW Priority SHOULD

Name CVE Scanning Service Configurability

Description The LAZARUS system should provide a configurable policy list when scanning a
Software Bill of Materials (SBOM), such as

- Restrictions on component age
- Restrictions on outdated and EOL/EOS components
- Prohibition of components with known vulnerabilities
- Restrictions on public repository usage
- Restrictions on acceptable licenses
- Component update requirements
- Deny list of prohibited components and versions
- Acceptable community contribution guidelines

Category Functional

ID LZR-CV4 MoSCoW Priority COULD

Name Unnecessary Direct and Transitive Dependencies Detection

Description The LAZARUS system could offer the option to detect unnecessary direct and
transitive dependencies based on a provided Software Bill of Materials (SBOM)

Category Functional

ID LZR-CV5 MoSCoW Priority COULD

Name Project Dependencies Health Check

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 52 30/04/2023

Description The LAZARUS system could offer the option to assess the health of project
dependencies based on a provided Software Bill of Materials (SBOM)

Category Functional

8.8 USE CASE 7 - Container Vulnerability Scanning

ID LZR-CS1 MoSCoW Priority MUST

Name Container Vulnerability Scanning Reliability

Description The LAZARUS system must be able to reliably detect insecure containers
(outdated libraries, incorrectly configured containers, outdated operating
system) based on a provided container image

Category Functional

ID LZR-CS2 MoSCoW Priority SHOULD

Name Container-based Compliance Validation Detection

Description The LAZARUS system should be able to reliably detect possible compliance
validations based on a provided container image

Category Functional

ID LZR-CS3 MoSCoW Priority COULD

Name Container-related Best Practice Suggestions

Description The LAZARUS system could suggest best practices based on a provided
container image

Category Functional

8.9 USE CASE 8 - Detection of Network Attacks & DDoS

ID LZR-NA1 MoSCoW Priority MUST

Name Network Tool Reliability

Description The LAZARUS system must be able to reliably detect vulnerabilities in tested IDS
and/or networks

Category Functional

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 53 30/04/2023

ID LZR-NA2 MoSCoW Priority SHOULD

Name Network Tool Configurability

Description The LAZARUS system should provide detailed configuration options for
IDS/network vulnerability checks

Category Functional

ID LZR-NA3 MoSCoW Priority COULD

Name Incident Response and Recovery Policy Suggestions

Description LAZARUS could enable organizations to develop and implement incident
response and recovery plans as required by the regulations of their industry,
through improvement and best practice suggestions.

Category Functional

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 54 30/04/2023

9 Conclusions

This deliverable provides the User Requirements for the components to be developed in LAZARUS project.

The term “User Requirements” is used in a specific technical sense as “the expression of the needs of all

stakeholders in the utilization domain”, and the language used is that of the practitioners, describing their

operational, functional and non-functional needs.

All user requirements and project goals that have been analysed in several iterations with users and partners
have been taken into account in defining and streamlining system specifications per module and in an
integrated way. In total 55 requirements have been identified and split as follows:

• Per category (
o 48 functional
o 7 non-functional

• Per priority
o 24 MUST
o 13 SHOULD
o 18 COULD

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 55 30/04/2023

The report describes the process used for eliciting the requirements, the methodology used to collect data

from all stated sources, the analysis of the results, and the identification and prioritisation of the user

requirements.

The final set of LAZARUS user requirements presented in the report will be the basis for LAZARUS system

specifications (D2.3) and architecture design (D2.4) and development phases (WP4), although, it is an

iterative process that will be reviewed during the development phase. Additionally, User Requirements will

also be an inherent part of the evaluation process and of course of the dissemination and exploitation

scenarios stating key functions of the system and its Unique Selling Points (USPs).

D2.2 Initial end-user requirements

©101070303 LAZARUS Project Partners 56 30/04/2023

10 References

[1] https://en.wikipedia.org/wiki/Functional_requirement

[2] https://en.wikipedia.org/wiki/Non-functional_requirement

[3] https://en.wikipedia.org/wiki/Systems_engineering

[4] https://www.iso.org/standard/iso-iec-27000-family

[5] https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32002L0021

[6] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32016L1148

[7] https://en.wikipedia.org/wiki/MoSCoW_method

https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Systems_engineering
https://www.iso.org/standard/iso-iec-27000-family
https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32002L0021
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32016L1148
https://en.wikipedia.org/wiki/MoSCoW_method

